Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
We present a strategy for constructing activatable photoacoustic imaging (PAI) probes for in vivo enzyme activity measurements, based on a dissociation strategy previously applied to in vitro sensing. Unlike conventional nanoparticle aggregation strategies, dissociation minimizes false positives and functions effectively in complex biological environments. Overcoming the challenge of dissociating nanostructure aggregates, which arises from the strong van der Waals forces at short distances, we demonstrate the controlled assembly and dissociation of citrate-capped gold nanorods (AuNRs-citrate) using a diarginine peptide additive and a thiolated polyethylene glycol (HS-PEG-OMe), respectively. This assembly dissociation mechanism enables precise control of the optical and photoacoustic (PA) properties of AuNRs in both in vitro and in vivo settings. Building on these findings, we engineered an enzyme-sensitive PAI probe (AuNRs@RgpB) composed of AuNR assemblies and a PEG-peptide conjugate with a protease-specific cleavage sequence. The probe detects Arg-specific gingipain (RgpB), a protease expressed by Porphyromonas gingivalis associated with periodontal disease and Alzheimer’s disease. Proteolytic cleavage of the peptide sequence triggers AuNR dissociation, resulting in enhanced PA signal output. The probe was designed to be injected intrathecally for preclinical trials to image gingipains and investigate the value of gingipain inhibitors developed for Alzheimer’s disease. The probe’s performance was characterized in vitro using UV−vis spectroscopy and PAI, achieving detection limits of 5 and 20 nM, respectively. In vivo studies involved intracranial injection of AuNRs@ RgpB into RgpB-containing murine models, with PA monitoring over time. RgpB activity produced a four-fold PA signal increase within 2 h, while P. gingivalis-infected mice showed similar signal enhancement. Specificity was confirmed by negligible responses to Fusobacterium nucleatum, a non-RgpB-producing bacterium. Additionally, the system demonstrated utility in drug development by successfully monitoring the inhibition of RgpB activity using RgpB inhibitors (leupeptin and KYT-1) in vivo models. Beyond its immediate application to RgpB detection, this modular approach to plasmonic-based sensing holds significant potential for detecting other proteases, advancing both nanotechnology and protease-targeted diagnostics.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Plasmonic nanoparticle-based biosensors often report a colorimetric signal through the aggregation or clustering of the nanoparticles (NPs), but these mechanisms typically struggle to function in complex biofluids. Here, we report a matrixinsensitive sensor array approach to detect bacteria, fungi, and viruses whose signal is based on the dissociation of the peptideaggregated NPs by thiolated polyethylene glycol (HS-PEG) polymers. We show that the HS-PEGs of differing sizes have varying capabilities to dissociate citrate-capped gold nanoparticle (AuNP) and silver nanoparticle (AgNP) assemblies. The dissociative abilities of the HS-PEGs were used in this sensor array to discriminate at the 90% confidence level the microorganisms Porphyromonas gingivalis, Fusobacterium nucleatum, and Candida albicans in water and saliva using linear discriminant analysis (LDA). We further demonstrate the versatility of the sensor array by detecting various subtypes of the viruses SARS-CoV-2 (beta, delta, and omicron) and influenza (H3N2) spiked in saliva samples using LDA. In the final demonstration, the sensor array design stratified healthy saliva samples from patient samples diagnosed with periodontitis as well as COVID-19.more » « less
-
Abstract Stability issues in membrane-free coacervates have been addressed with coating strategies, but these approaches often compromise the permeability of the coacervate. Here we report a facile approach to maintain both stability and permeability using tannic acid and then demonstrate the value of this approach in enzyme-triggered drug release. First, we develop size-tunable coacervates via self-assembly of heparin glycosaminoglycan with tyrosine and arginine-based peptides. A thrombin-recognition site within the peptide building block results in heparin release upon thrombin proteolysis. Notably, polyphenols are integrated within the nano-coacervates to improve stability in biofluids. Phenolic crosslinking at the liquid-liquid interface enables nano-coacervates to maintain exceptional structural integrity across various environments. We discover a pivotal polyphenol threshold for preserving enzymatic activity alongside enhanced stability. The disassembly rate of the nano-coacervates increases as a function of thrombin activity, thus preventing a coagulation cascade. This polyphenol-based approach not only improves stability but also opens the way for applications in biomedicine, protease sensing, and bio-responsive drug delivery.more » « less
-
Abstract We report noncovalent assemblies of iRGD peptides and methylene blue dyes via electrostatic and hydrophobic stacking. These resulting nanomaterials could bind to cancer cells, image them with photoacoustic signal, and then treat them via photodynamic therapy. We first assessed the optical properties and physical properties of the materials. We then evaluated their utility for live cell targeting, in vivo imaging, and in vivo photodynamic toxicity. We tuned the performance of iRGD by adding aspartic acid (DD) or tryptophan doublets (WW) to the peptide to promote electrostatic or hydrophobic stacking with methylene blue, respectively. The iRGD-DD led to 150-nm branched nanoparticles, but iRGD-WW produced 200-nm nano spheres. The branched particles had an absorbance peak that was redshifted to 720 nm suitable for photoacoustic signal. The nanospheres had a peak at 680 nm similar to monomeric methylene blue. Upon continuous irradiation, the nanospheres and branched nanoparticles led to a 116.62% and 94.82% increase in reactive oxygen species in SKOV-3 cells relative to free methylene blue at isomolar concentrations suggesting photodynamic toxicity. Targeted uptake was validated via competitive inhibition. Finally, we used in vivo bioluminescent signal to monitor tumor burden and the effect of for photodynamic therapy: The nanospheres had little impact versus controls (p = 0.089), but the branched nanoparticles slowed SKOV-3 tumor burden by 75.9% (p < 0.05).more » « less
An official website of the United States government
